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Abstract Modelling of conformational changes in bio-
polymers is one of the greatest challenges of molecular
biophysics. Metadynamics is a recently introduced free
energy modelling technique that enhances sampling of
configurational (e.g. conformational) space within a
molecular dynamics simulation. This enhancement is
achieved by the addition of a history-dependent bias
potential, which drives the system from previously
visited regions. Discontinuous metadynamics in the
space of essential dynamics eigenvectors (collective
motions) has been proposed and tested in conformation-
al change modelling. Here, we present an implementa-
tion of two continuous formulations of metadynamics in
the essential subspace. The method was performed in a
modified version of the molecular dynamics package
GROMACS. These implementations were tested on
conformational changes in cyclohexane, alanine dipep-
tide (terminally blocked alanine, Ace-Ala-Nme) and
SH3 domain. The results illustrate that metadynamics
in the space of essential coordinates can accurately
model free energy surfaces associated with conforma-
tional changes.
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Introduction

One of the most important features of biopolymers is their
ability to adopt different conformations to fulfil their
catalytic, signalling, memory or mechanical roles. In
addition, protein folding, unfolding, and misfolding can
all be viewed as conformational changes. Accurate model-
ling of conformational changes using molecular modelling
methods is one of the greatest challenges in this field.
However, conformational families of a molecule are often
separated by high free energy barriers. These barriers cause
conformational changes to be slow and that the probability
of overcoming these barriers in a short (e.g. nanosecond)
molecular dynamics simulation is low or even negligible.
Solving this problem by using the brute force of
supercomputer power is not always applicable. The idea
of enhancement the sampling of configurational space is
not new in molecular simulations [1]. Metadynamics [2, 3]
is a recently introduced molecular dynamics-based
technique, which enhances sampling and quantitatively
evaluates a free energy surface. The initial step of
metadynamics involves the choice of a few (typically two)
collective variables. Collective variables are geometric
parameters that are supposed to describe the progress of
the studied process. Inter-atomic distances, valence and
dihedral angles and coordination numbers have often been
used as collective variables in recent applications of
metadynamics [4-8]. In metadynamics, the system is
simulated by a standard molecular dynamics simulation to
which a history-dependent bias potential is added. The bias
potential is usually formulated as the sum of Gaussian hills

@ Springer



996

J Mol Model (2008) 14:995-1002

along the trajectory. Each hill is located in the space of
collective variables:
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where s]’.i is the jth collective variable of ith hill, w and ds are
a height and width of a hill, respectively. These parameters
can be chosen ad hoc and they can be further tuned to
improve accuracy and performance of the metadynamics run
[9]. The coupling between the bias and the microscopic
potential (the meaning of the vector s) will be discussed later.
This bias potential stepwise floods free energy minima and
thus allows the system to explore the configurational space
more efficiently. Moreover, when the flooding is complete,
this bias potential approximates the free energy surface of
the studied system. Metadynamics has been successfully
applied in reaction mechanism modelling [4], protein-ligand
[5] and protein-protein [6] docking, conformational change
modelling [7] and crystal structure transition [8].

Several different formulations of metadynamics were
proposed. The original formulation [2] is based on free
energy gradient approximated by short runs of constrained
molecular dynamics simulations. Another formulation [3]
was proposed to combine metadynamics with Car-Parrinello
dynamics. In this formulation a fictive particle (i.e. not
located in the Cartesian space) is placed into the space of
collective variables. This particle is characterized by its mass
M; and its dynamics is driven by a harmonic restraint to the
system, and by the bias potential (the vector s in Eq. 1 is the
position of the particle s) as described by the Lagrangian:

L=L +12M» % 2+1
) 5 I\ or 2
2
X ZAJ(SJ(X) _Sj) +Vbias(s7t) (2)
J

where L, is the standard molecular dynamics Lagrangian and
S(x) is the projection of Cartesian coordinates of the system
onto the space of collective variables. This formulation
(henceforth referred to as Lagrangian metadynamics) can
obtain accurate free energy surfaces from very short
simulations. Finally, a bias potential can also be added
directly to the system (the vector s in Eq. 1 is a vector of
parameters S(x)) as described by the Lagrangian:

L = Lo + Viius(S(x), ) (3)

This formulation [9] is henceforth referred to as direct
metadynamics.

In order to apply metadynamics to the field of modelling
of conformational changes in biopolymers, we have
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introduced metadynamics in the space of essential coor-
dinates (MTDEC) [10]. Essential coordinates are obtained
by a principal component analysis of molecular trajectories
(essential dynamics) [11]. Briefly, coordinates x of selected
atoms are superimposed to a reference structure along the
trajectory. Then a covariance matrix is calculated:

c=((x— @)x—x)") (4)

where <> denotes time averaging. The covariance matrix
is diagonalized to obtain a set of eigenvectors and
eigenvalues:

C=EAE™' (5)

where E is a matrix of eigenvectors describing individual
collective motions, and A is a diagonal matrix of
eigenvalues describing the extent of these motions. Using
this technique it is possible to dissect complicated motions
of the studied biopolymer into a limited number of major
collective motions. Essential coordinates (projections to
eigenvectors) provide a dimensionally-reduced view of
molecular structure and dynamics.

We have successfully performed MTDEC with the
original (constraint-based) formulation [10] of metadynam-
ics. Implementations of the Lagrangian and direct metady-
namics in the space of essential coordinates in the
GROMACS package are presented in this paper. The
program was tested on three different molecular systems.
The simplest example was a conformational change in a
cyclohexane molecule in vacuum (Fig. 1). The second
example is alanine dipeptide (Ace-Ala-Nme, Fig. 2), which
serves as a simple model of conformational changes in
peptides and proteins. Conformational changes in essential
coordinates were previously studied [10] for this system
using the original (constraint-based) metadynamics [2]. The
third system was the SH3 domain (type 3 Src homology,
Fig. 3) which is a regulatory (adaptor) domain present in
numerous eukaryotic proteins and is involved in signalling
events within a cell. Alanine dipeptide and SH3 domain
were modelled in an explicit water.

The presented approach was implemented as an add-on
to the popular molecular dynamics package GROMACS
[12]. The code can be obtained free of charge on the
author's web site.

Methods
Implementation

MTDEC was implemented in a similar manner as essential
dynamic sampling [13, 14] or flooding [15], and many of
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Fig. 1 Free energy surface of cyclohexane in vacuum. (a) the training
set composed of four conformations projected to the subspace of
essential coordinates, (b) the scree plot, together with a graphical

the functions already implemented in GROMACS were
also used in the implementation of MTDEC. Reference and
average structures, eigenvectors and other parameters are
read from the edi file, similar to the essential dynamic
sampling or flooding in GROMACS. This file can be
written/edited manually or created using the modified
program make edi by typing, e.g.:

make_edi -sbefore_mtd -f eigenvec -osam -nindex
-mtdec 1,2 -mtdss 0.05,0.05

This creates the file sam.edi for a direct metadynamics in
the space of the first two eigenvectors. Widths of a hill
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illustration of eigenvectors, (¢) the FES calculated using direct
MTDEC, (d) development of free energies of free energy minima
(chair A was taken as zero)

in both coordinates are 0.05 nm. MTDEC is run by
typing:

grompp -f mtd -sbefore_mtd -omtdl
mdrun -smtdl -mtdhills -eisam -eosam

where hills is the name of the file in which centres of
Gaussian hills are stored (with .mtd suffix). The program
searches for the file hills.mtd and if present it continues
adding new hills (even with different width(s) and height).

Several keywords were added to the edi file. Hills are
added and read in/from the file every MTDPERSTEP steps.
Height and width(s) of a hill are set by MTDW and MTDDS,
respectively. Parameter LAGRANGE switches between
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Fig. 2 Free energy surface of alanine dipeptide in water. (a)
illustration of eigenvectors, (b) projection of the training set (1 ns
molecular dynamics trajectory) to the space of essential coordinates.

Lagrangian (1) and direct (0) metadynamics. If the parameter
RESTART (only for Lagrangian metadynamics) is set to 0,
initial values of collective variables are set explicitly by the
MTDS parameter. Otherwise they are obtained as
s(t =0) = S(x(¢ = 0)). Multiple walker [16] MTDEC was
successfully tested with 10 walkers, by simply running 10
independent mdrun jobs with a common hills file.

FES calculated using 10 ns direct (¢) and 200 ps Lagrangian (d)
MTDEC

Umbrella sampling/WHAM

Umbrella sampling (US) combined with weighted histo-
gram analysis method (WHAM) [17, 18] were used as
reference techniques to provide a comparison with the FES
of metadynamics for SH3 domain. The system was
simulated in 36 molecular dynamics simulations (each

Fig. 3 The structure of SH3 domain (a, PDB-ID: 209S) and a graphical representation of the first (b) and the second (¢) eigenvector
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Fig. 4 MTDEC of SH3 domain. (a) the training set (classical 1 ns
dynamics) projected to the space of essential coordinates. (b)
projection of MTDEC of the same duration (1 ns) to the space of

100 ps). In each simulation the system was restrained to
one of points depicted in Fig. 4d by a harmonic restraint
(1,000 kJ/mol.nm?). Projections of resulting trajectories
were analysed by 2D-WHAM (program wham-2d) [19].

Results
Cyclohexane

Cyclohexane was selected as one of simplest models of
conformational changes. It is possible to describe confor-
mational changes in ring molecules by Cremer's and Pople's
puckering coordinates as already tested within the metady-
namics machinery [20]. However, in this study we tested
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essential coordinates. Free energy surface calculated by MTDEC (c¢)
and by umbrella sampling (d) centres of harmonic restraints are shown
as green points)

essential coordinates as parameters describing the ring
puckering. The molecule of cyclohexane was modelled in
vacuo with parameters of CH, groups taken from the
GROMOS 53a5 force field (the united atom model) [21].
Four minimized conformations (two chairs and two
boats) were used as a model “trajectory” to describe the
conformational change in essential coordinates (Fig. 1a).
This four-snapshot “trajectory” was analysed using the
essential dynamics tool of GROMACS. It must be noted
that, strictly speaking, the resulting coordinates should not
be referred to as essential because they have not been
determined from a canonically sampled trajectory. Never-
theless, we refer to them as essential coordinates to
highlight the principle of their determination. These four
conformations, represented in the space of two essential
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coordinates, are depicted in Fig. 1a. As expected, only two
coordinates were necessary to describe the studied change
(Fig. 1b). One nanosecond direct metadynamics was
performed at 300 K. The size of a step was 1 fs. Gaussian
hills with a width of 0.01 nm and a height of 1.0 kJ/mol
were added every 1,000 steps. Metadynamics started from
the chair A conformation (see Fig. la), and after approx.
170 metadynamics steps the system jumped to boat
conformations. During the next approx. 100 metadynamics
steps the system explored boats A and B by transitions via
the twisted boat conformation (in the centre of Fig. lc).
During the rest of the metadynamics run, multiple transitions
were observed. This led to the flooding of all free energy
minima. Free energy values (Fig. 1d) of both chairs were
entirely the same (0+6 kJ/mol) and boat conformations were
modelled as less favourable (3445 and 34+4 kJ/mol for boat
A and boat B, respectively). Free energies of boat and
twisted boat conformations were almost the same. It must
be noted that the free energy surface could be deformed
by a symmetry of the system and a detailed study would
be required to address this point. Nevertheless, the
predicted activation free energy of the conformational
change (approx. 40 kJ/mol, starting from the chair) is in
good agreement with experimental value (41.7 kJ/mol
[22]), and these results illustrate that a physically relevant
free energy surface of this text-book conformational change
can be obtained using only a 3-minute calculation on a
personal computer.

Alanine dipeptide

Alanine dipeptide (Ace-Ala-Nme) is a popular model of
conformational changes in peptides and proteins. Its
conformation is determined by Ramachandran dihedral
angles ¢ and v, similar to peptides and proteins. In the
study, which introduced the metadynamics in essential
coordinates [10], we used alanine dipeptide in explicit
solvent as a model of conformational change. A classical,
1 ns molecular dynamics simulation can explore three
different conformational families, namely ok, C7.q and C5
(Fig. 2). This nanosecond trajectory of five atoms was used
to determine the essential coordinates. As reported in
reference [9], two eigenvectors are capable of describing
92% of motions in the selected atoms. Figure 2b shows a
projection of the classical MDS trajectory to the first two
essential coordinates.

Two different formulations of metadynamics in essential
coordinates were tested. In both runs, temperature was set to
300 K and size of a step was 1 fs. Electrostatics was treated by
a single cut-off set to 1 nm. First, direct metadynamics was
tested with the height and the width of a hill set to 0.1 kJ/mol
and 0.01 nm, respectively. Hills were added every 1,000 steps.
In totall, 10,000 hills were deposited, corresponding to a 10 ns
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molecular dynamics simulation. The resulting FES is illus-
trated in Fig. 2c. The second tested metadynamics formula-
tion was Lagrangian. This method was originally developed
to be used within ab initio machinery in order to obtain a
reasonably accurate FES from much shorter MDS runs. The
mass and coupling constant of the fictive particle were set to
10° (kJ.ps®)/(mol.nm?) and 10° kJ/(mol.nm?), respectively.
The resulting FES coming from 200 ps MTDEC is illustrated
in Fig. 2d.

Free energy surfaces calculated by direct (Fig. 2c),
Lagrangian (Fig. 2d) and constraint-based [10] metady-
namics where very similar. The FES calculated using
Lagrangian MTDEC was rougher, which is the price paid
for the fact that the simulation was significantly (50 times)
shorter. When a long Lagrangian MTDEC was performed
with slightly different setup, it produced a FES almost
identical to the FES from the direct MTDEC (data not
shown). Both continuous metadynamics (direct and La-
grangian) turned out to be more efficient than discontinu-
ous. All three major free energy minima (o, C7.q and C5)
were resolved. Calculated free energy values were in
qualitative as well as quantitative agreement between
different formulations of metadynamics. Conformation og
was modelled as the most favourable, whereas C7.4 and C5
were almost isoenergetic and less favourable than og.

SH3 domain

SH3 domains are present in numerous multidomain
eukaryotic proteins such as protein kinases, protein phos-
phatases, phospholipases, binding proteins and others.
Biological function of these proteins is regulated by an
equilibrium between a target-bound and the Pro-X-X-Pro-
bound form of SH3 domain. Because of its compact
structure and medicinal importance, it is a popular object
of molecular modelling studies. The SH3 domain from
ponsin (PDB ID: 209S, Fig. 3a) [23] was selected for this
study because of its high resolution. The protein was placed
into a periodic box of solvent (3,683 TIP3P water
molecules). Electrostatics was modelled using the particle-
mesh Ewald method, with a cut-off set to 0.9 nm. A one
nanosecond molecular dynamics simulation in the AMBER
99 force field [24, 25] was performed. The trajectory
(C” — atoms) was analysed by essential dynamics analy-
sis. Two highly flexible regions (residues 818-822 and
830-844) were excluded from the essential dynamics
analysis and biasing by metadynamics. Contrary to appli-
cations of essential dynamics on cyclohexane and alanine
dipeptide, in the SH3 domain there was a higher number of
essential coordinates necessary to describe major motions.
The first and the second eigenvectors (Fig. 3b and c)
describe 22% and 13%, respectively, of the motions in the
selected atoms.
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Direct metadynamics was performed in the space of the
two first eigenvectors. Heights and sizes of hills were 2 kJ/mol
and 0.05 nm, respectively. Hills were added every 1,000 steps.
Metadynamics (1 ns, 1,000 hills) in these essential coordinates
yielded a funnel-shaped free energy surface. The space
explored by metadynamics (Fig. 4b) was wider than that
explored by classical molecular dynamics (Fig. 4a). Depth of
the free energy surface obtained by metadynamics was
59 kJ/mol (unexplored regions set to zero, Fig. 4c), which
corresponds roughly to microsecond dynamics. The studied
protein remained in its folded state during the metadynamics
run. The resulting free energy lies in the range of activation
free energies of unfolding usual for mesophilic proteins (50—
120 kJ/mol at a given temperature) [26]. It is therefore not
possible to say whether the protein remained folded due to
the fact that its unfolding free energy was not reached.
Another explanation is that the essential coordinates obtained
using analysis of a nanosecond normal temperature trajecto-
ry are not capable of describing the unfolding process. The
resulting FES was also compared by the FES calculated by
US/WHAM (Fig. 4d). The FES obtained from 36x100 ps
US/WHAM calculation is in quantitative agreement to the
FES obtained by MTDEC.

Discussion

Metadynamics provides two great advantages compared to a
classical molecular dynamics simulation, namely free energy
modelling and the enhancement of configurational sampling.
Both of these advantages are relevant in modelling conforma-
tional changes. Numerous examples of metadynamics appli-
cation illustrate the great potential of this method to be applied
to different types of chemical processes and at different levels
of theory [4-8]. Results of metadynamics are influenced by
the choice of collective variables. Choice of collective
variables represents a dimensionality reduction of the studied
process. Collective variables must be chosen to maximally
describe the studied process and simultaneously, their number
must be kept to a minimum (typically two). If the collective
variables are not capable of separating two important free
energy minima, these minima are not resolved in the resulting
free energy surface. Here we present metadynamics in the
space of essential coordinates. Principal component analysis
is a general purpose dimensionality reduction method and is
also widely applied in the description of molecular structures.
Therefore essential coordinates could be determined auto-
matically, contrary to the selection of other types of collective
variables, which require certain experience. Essential coor-
dinates enhance the scope of collective variables that can be
applied in metadynamics.

Essential subspace modelling has proved to be very
useful in tracing collective motions in biopolymers. Roles

of collective motions in protein dynamics, activity regula-
tion or enzymatic activity were studied using this approach
[27-29]. Here, essential coordinates were applied within the
metadynamics framework on relatively small systems, such
as cyclohexane (this study) or alanine dipeptide (this study
and reference [9]). The first real protein (SH3 domain in
this study) was modelled only within the vicinity of its
native structure. Future application of metadynamics in the
space of essential coordinates will show whether these
coordinates can accurately describe conformational free
energy changes in large proteins, including large confor-
mational changes, folding and unfolding processes etc.
Examples of the application of essential dynamics sampling
methods [13, 14] are encouraging.

The essential coordinates of a protein or other biopolymer
are usually determined for all atoms, backbone atoms or C%
atoms. However, in order to be applied in metadynamics,
they can also be determined for some selected “hot spot”
regions in the studied biopolymer. In addition, alternative
methods which provide eigenvectors in a similar fashion as
essential dynamics analysis could be applied. Such methods
include normal mode analysis [30], Gaussian network model
[31] or full correlation analysis [32].

The results presented in this study show some practical
aspects of combining metadynamics with essential dynamics,
including its coding, comparison of different metadynamics
formulations and its application to systems of different sizes.
The presented code implements MTDEC into the popular
GROMACS code [12] and can be obtained free of charge
and further extended due to its open source nature.
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